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Abstract

Knowledge of the relationship between the penetration depth and the contact radius is required in order to deter-
mine the mechanical properties of a material starting from an instrumented indentation test. The aim of this work is
to propose a new penetration depth–contact radius relationship valid for most metals which are deformed plastically
by parabolic and spherical indenters. Numerical simulation results of the indentation of an elastic–plastic half-space
by a frictionless rigid paraboloı̈d of revolution show that the contact radius–indentation depth relationship can be rep-
resented by a power law, which depends on the reduced Young�s modulus of the contact, on the strain hardening expo-
nent and on the yield stress of the indented material. In order to use the proposed formulation for experimental
spherical indentations, adaptation of the model is performed in the case of a rigid spherical indenter. Compared to
the previous formulations, the model proposed in the present study for spherical indentation has the advantage of being
accurate in the plastic regime for a large range of contact radii and for materials of well-developed yield stress. Lastly, a
simple criterion, depending on the material mechanical properties, is proposed in order to know when piling-up appears
for the spherical indentation.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Instrumented indentation experiments, where load and depth of penetration are measured continuously,
enable an evaluation of mechanical properties such as Young�s modulus, work hardening exponent and
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yield stress (Oliver and Pharr, 1992; Taljat et al., 1998; Kucharski and Mröz, 2001; Beghini et al., 2000;
Sundararajan and Tirupataiah, 1994). This assessment requires precise knowledge of the true contact area
between the indenter and the indented material, which depends on the way the material is deformed at the
contact boundary. During an indentation test, the material around the contact area can be deformed up-
wards or downwards along the z axis where load is applied. This behavior, called piling up in the first case
and sinking-in in the second case, is affected by the mechanical properties of the indented materials. Indeed,
such surface deformation modes influence hardness measurements as the true contact area between the in-
denter and the specimen increases in the case where piling-up predominates, and decreases in the event that
sinking-in predominates (Bolshakov and Pharr, 1998). On the other hand, if the development of piling-up
and sinking-in is not taken into account, errors of up to 20% can be obtained for the Young�s modulus
value (Bolshakov and Pharr, 1998; Eskner and Sandström, 2004).

Many studies have been realized in order to determine a relationship between the contact area and the
indenter displacement measured during the continuous indentation test.

Numerical and experimental work on spherical indentation tests provided the following general formu-
lation (Hill et al., 1989; Taljat et al., 1998; Alcala et al., 2000; Kucharski and Mröz, 2001):
Fi
a2 ¼ 2c2hR ð1Þ

where a is the contact radius, h is the maximum penetration depth underneath the original surface and R is
the indenter radius (Fig. 1).

In this equation, c2 quantifies the degree of piling-up and sinking-in during the indentation test; c2 > 1
indicates piling-up, whereas, c2 < 1 accounts for sinking-in.

In the case of material which is elastically deformed by indentation, c2 is constant and equal to 0.5
(Sneddon, 1965). When the stress under the indenter is higher than the yield stress of the indented material,
this parameter increases with the indent depth during a stage called ‘‘elastic–plastic indentation regime’’
(Mesarovic and Fleck, 1999). For higher indent depths, the c2 parameter is again found constant during
a stage called ‘‘fully plastic regime’’ (Mesarovic and Fleck, 1999).

For this last indentation regime, c2 is often linked to the strain hardening exponent of the indented mate-
rial (Matthews, 1980; Hill et al., 1989; Taljat et al., 1998; Alcala et al., 2000; Kucharski and Mröz, 2001). It
is generally recognized that piling-up predominates when the hardening exponent is weak. However, results
of finite element simulations of spherical indentation showed that the yield stress of the indented material
has an influence on the c2 parameter (Beghini et al., 2000). For a given strain hardening exponent and
Young�s modulus, the smaller the yield stress, the more the pile up predominates. Moreover, Mesarovic
and Fleck (1999) observed that, compared with the frictionless case, sticking friction reduces the amount
of pile-up at the edge of the indenter and leads to consistently smaller contact area for a given depth. More
recently, it was also shown that an increase in friction coefficient between a spherical indenter and the
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g. 1. Schematic representation of sinking-in (a) and piling-up (b) of material around spherical indents and sharp indents.
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indented material can reduce the contact radius when considerable piling-up occurs (Taljat and Pharr,
2004).

To our knowledge, no relationship between the contact area and the indenter displacement has been
proposed when the indentation regime is ‘‘elastic–plastic’’. Moreover, the indentation stage called
‘‘Fully-plastic regime’’, in which the proposed formulation for c2 is considered as valid, is not clearly
defined.

It is assumed that the fully plastic regime is reached when the plastic deformation, which occurs in the
material beneath the indenter, reaches the free material surface and when the following equation is valid
(Tabor, 1951; Johnson, 1985):
P m

rR

¼ w ð2Þ
where Pm is the average indentation pressure, rR is the stress corresponding to the indentation representa-
tive plastic strain (�R = 0.2a/R, in the case of spherical indentation (Tabor, 1951)) and w is a constant,
called ‘‘constrain factor’’, essentially dependent on the material mechanical properties (Taljat et al.,
1998; Sundararajan and Tirupataiah, 1994). In the case of spherical indentation, the transition between
the ‘‘elastic–plastic’’ and the ‘‘fully plastic’’ stages, in term of a/R value, depends on the E*/rR or E*/ry

ratio, where E* is the reduced elastic modulus of the contact and ry is the yield stress of the indented mate-
rial (Mesarovic and Fleck, 1999; Johnson, 1985; Park and Pharr, 2004). On the basis of results of different
experimental and numerical indentation tests by spheres, Johnson (1985) showed that fully plastic deforma-
tion is reached at a value E*a/(ryR) � 40. For elastic-ideally plastic solids, w increases until the ratio E*a/
(ryR) is equal to 40–50 (Mesarovic and Fleck, 1999). More recently, for a range of E*/ry ratio, which in-
cludes most metals, Park and Pharr (2004) showed that full plasticity is achieved when the value of the ratio
E*a/(ryR) is about equal to 66.

For spherical indentation, Mesarovic and Fleck (1999) define a new regime called ‘‘plastic similarity re-
gime’’ inside the ‘‘fully plastic regime’’, in which Eqs. (1) and (2) are both valid. By observing the results of
Mesarovic and Fleck (1999), a difference can be noted between the lower limit of the ‘‘fully plastic regime ‘‘
determined by Eq. (2) and the lower limit of the ‘‘plastic similarity regime’’ determined by Eqs. (1) and (2).
For example, in the case of E*/ry ratio equal to 10,000, w is constant when E*a/(ryR) is about equal to 40–
50 and c2 is constant when E*a/(ryR) reaches the value of 1000. For smaller E*/ry ratios, Mesarovic and
Fleck (1999) show that the plastic similarity regime is never reached since c2 increases in the elastic–plastic
regime and immediately falls with increasing contact size in a stage called ‘‘finite deformation regime’’. For
the authors, the drop in c2 value for large contact sizes represents the failure of the assumptions involved in
the similarity solution, especially the assumption of infinitesimal strain kinematics and the boundary con-
ditions of uniform normal velocity. As the contact size increases, the tangential velocity of points in contact
with the indenter deviates from the horizontal, so that the uniform vertical velocity condition ceases to be
appropriate. We can notice that the similarity solution was also determined with the assumption that geo-
metric profile of the indenter can be represented by a power-law relationship. This assumption includes
indentation by a rigid sphere, since, for small contact sizes, the profile of a sphere can be approximated
by a paraboloı̈d of revolution. For large contact sizes, the failure of this assumption in the case of spherical
indentation can also explain the drop in the a2/2hR ratio.

To summarize, when plasticity occurs, the contact radius–penetration depth relation (1) gives a constant
c2 only in a stage called ‘‘similarity regime’’, the range of which depends on the ratio E* a/(ryR) or is never
valid if the E*/ry ratio is smaller than 1000, which is the case of most materials used in industry (Mesarovic
and Fleck, 1999).

The aim of this work is to propose a new relationship between the penetration depth of a spherical in-
denter, h, and the contact radius, a, valid for most usual metals, in elastic–plastic and fully plastic regimes.
Firstly, after analysing the different c2 formulations proposed in the literature, results of numerical
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simulations of the indentation of an elastic–plastic half-space by a frictionless rigid paraboloı̈d of revolu-
tion are presented. This type of indenter is used in order to obtain a simple relationship between a and h

when plasticity occurs and to avoid the problem of geometrical singularity which arises in spherical inden-
tation for high contact radius values. Indeed, when the penetration depth become close to R value, the
derivative of the function a(h) tends toward to 0 in the case of spherical indentation, i.e the curve a(h)
has a horizontal asymptote. This result is not coherent with that obtained by the Eq. (1) (the derivative
of the function a(h) is equal to c2 for depth equal to R). Because the curve a(h) does not have a horizontal
asymptote for parabolic indentation, the h–a relationship will be valid for contact radius values higher than
R. Starting from the finite element results, a new model of the a–h relationship, valid in the plastic regime is
proposed for the parabolic indentation. Then, in order to use the proposed formulation for experimental
spherical indentations, adaptation of the model is performed in the case of a rigid spherical indenter. On
the basis of numerical simulations and theoretical results, the validity of the c2 formulations proposed to
describe the a–h relationship in the fully plastic regime is discussed. Finally, a simple criterion, depending
on the material mechanical properties, is proposed in order to know when piling-up appears for the spher-
ical indentation.
2. Overview of the theory

Norbury and Samuel (1928) were among the first to show that the profile of the surface indended by a
sphere is characterized by piling-up or sinking-in depending on the hardening properties of the material.
The level of contact perimeters, experimentally determined by these authors after unloading, shows that
annealed metals, which are fully capable of hardening, exhibit sinking-in. On the contrary, cold-worked
metals showing almost perfectly plastic behavior are characterized by piling-up.

Moreover, they notice a relationship between the ratio of (hc � h)/h and (n + 2), where hc is the contact
depth (Fig. 1) and (n + 2) the exponent of the Meyer law (Meyer, 1908) given by
F ¼ kanþ2 ð3Þ

in which, F is the applied load and k and n are material constants. Further work by O-Neill (1944) and
Tabor (1951), showed that, for a wide range of materials, the n value was equal to the strain hardening
exponent of the following tensile behavior law:
r ¼ Ken ð4Þ
where r is the uniaxial true stress, K is the strength coefficient, e is the true plastic strain and n is the strain
hardening exponent.

According to this rule, Matthews (1980) proposed the following equation as a fit to the Norbury and
Samuel hc/h versus n data obtained after loading, at a depth for which a/R was mostly between 0.4 and
0.8, and unloading:
hc

h
¼ 1

2
1þ n

2

� �2 1�n
nð Þ ð5Þ
If the shape of the sphere can be approximated by a parabolic curve or for small displacements of the spher-
ical indenter (hc� R), Eq. (5) can be expressed by using the c2 parameter (see Eq. (1)) introduced by Hill
et al. (1989) as follows:
c2 ¼ a2

2hR
¼ 1

2
1þ n

2

� �2 1�n
nð Þ ð6Þ
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By using these equations, we can observe that, piling-up occurs, i.e hc/h and c2 are higher than 1, when n is
smaller than approximately 0.25.

More recently, Hill et al. (1989) conducted a theoretical and numerical study of the spherical indentation
test using a nonlinear elastic constitutive model for the indented material. According to the authors, this
model, equivalent to a rigid/plastic behavior law for a Brinell test, should be applicable for elastic–plastic
material, as metals, over most of the plastic domain once the Meyer regime is established. The results of the
theoretical study of the spherical indentation test, show that the speculative formulae of Matthews (1980) is
incompatible with the pressure distribution. From the results of this theoretical study and FE computa-
tions, Hill et al. (1989) proposed a new relationship for c2 depending on n valid for the loaded state, namely:
c2 ¼ 5

2

2� n
4þ n

� �
ð7Þ
It is important to notice that in this equation, the invariant c2 only depends on n and cannot be influenced
by the yield stress ry and the Young�s modulus E of the indented material and the friction coefficient a be-
tween the indenter and the indented material because of the model used by the authors.

Another formulation of c2, valid for materials of elastic–plastic constitutive behavior, was proposed by
Taljat et al. (1998) using the results of finite element simulations. For numerical simulations, the plastic
constitutive behavior was taken to follow J2-associated flow theory with rate-independent deformation
and isotropic hardening. The plastic strain-hardening was represented by a power curve similar to that gi-
ven in Eq. (4) and Von Mises yield criterion was assumed. The c2 formulation, determined using computed
FE data obtained for an ry/E = 1/500 material, a friction coefficient equal to 0.2 and a a/R ratio equal to
0.5, (Taljat et al., 1998) is
c2 ¼ 1

4
5� 3n0.7
� �

ð8Þ
As for the formulation proposed by Hill et al. (1989), the invariant c2 of Eq. (8) cannot be influenced by ry,
E and a because of the assumptions of the model used by Taljat et al. (1998).

The Norbury and Samuel data (1928) were also used by Alcala et al. (2000) in order to propose another
c2 formulation. These data and experimental results, obtained for metals with ry/E ranging between 1/272
and 1/114, led to the following equation:
c2 ¼ 1.276� 1.748nþ 2.451n2 � 1.469n3 ð9Þ

We can notice that as for the other formulations, c2 depends only on n in this last equation. However, it
should be specified that Eq. (9) is obtained by fitting experimental data. Consequently, this equation does
not perfectly represent the evolution of c2 according to n. Moreover, the small range of ry/E values of the
metals tested by Alcala et al., does not allow to show if E or ry has an influence on c2.

Furthermore, the influence of E or ry on c2 was shown by Beghini et al. (2000) thanks to finite element
simulations of the spherical indentation of elastic–plastic materials for which the ry/E ratio is in the range
of 1/1050 to 1/262. The results show that the higher the value of ry/E ratio, the larger the sinking-in that is
developed. The same behaviour was found for conical indentation by Mata and Alcala (2004) for materials
with ry/E ratio between 1/4000 and 1/70.

In conclusion, the strain hardening exponent strongly affects the surface deformation around the contact
area. Fig. 2 shows that the different formulations give similar results. In Fig. 2, it can be seen that the different
formulations predict that piling-up and sinking-in occur for values of n which are respectively smaller and
larger than 0.25. However, the yield stress and the Young�s modulus have a considerable influence on the
piling-up and sinking development (Beghini et al. (2000); Mata and Alcala (2004). The influence of these
parameters on the c2 parameter value was not taken into account in the formulations because of the calculus
assumptions or because of the behavior law of the indented material (Hill et al., 1989; Taljat et al., 1998).
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Indeed, Hill et al. (1989) neglected the occurrence of a linear elastic range and the existence of a well-devel-
oped yield stress and Taljat et al. (1998) determined Eq. (8) for an unique value of ry/E. On the other hand, it
may be that the influence of E and ry on the c2 value was also not observed with experimental results because
the range of n values of the studied materials was so large that the yield stress had a weak influence on this
parameter. For example, the ry/E ratio of the metals tested by Alcala et al. (2000) in order to determine a
new c2 formulation, is in the range from 1/272 to 1/114, whereas the work hardening exponent lies between
0.05 and 0.5. Finally, we must specify that the influence of the friction coefficient between the indenter and
indented material was not taken into account in Eqs. (6)–(9)whereas it modifies the surface deformation
around the contact area (Mesarovic and Fleck, 1999; Taljat and Pharr, 2004; Mata and Alcala, 2004).
3. Numerical procedure

Numerical simulations were performed with both the rigid spherical indenter of R radius and the rigid
parabolic indenter geometry, represented by a curve of equation z = r2/R, where r and z are respectively the
radial and the vertical coordinates. These simulations were performed in axisymmetric mode and under
frictionless contact conditions (a = 0) using the large strain elastic–plastic feature of the Cast3M finite ele-
ment code. A typical mesh, comprising three-noded isoparametric triangles and four-noded isoparametric
rectangles, is shown in Fig. 3.

As shown in this figure, the bottom surface of the specimen has the vertical displacement fixed, whereas a
free movement was allowed in the horizontal direction. The parabolic indenter and the spherical indenter
are rigid. The shortest distance between nodes along the contact was about 0.002R and a maximum of 50
elements became directly in contact with the rigid indenter. The mesh size was chosen so that, in all cases,
the contact radius was 20 times smaller than the total length.

The constitutive model of the indented material was taken to follow the well known J2-associated flow
theory with rate-independent deformation and isotropic hardening. Yielding occurs according to the Von
Mises criterion and the stress–strain relationship follows the piecewise linear/power-law:



Fig. 3. Typical finite-element mesh, composed of isoparametric axisymmetric elements and rigid parabolic indenter or rigid spherical
indenter.
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e ¼
r=E if r < ry

rðn�1Þ=n
y r1=n=E otherwise

(
ð10Þ
where � is the total strain, r is the stress, E is the Young�s modulus, ry is the yield stress and n is the strain
hardening exponent. Finite element simulations were performed for materials exhibiting all possible com-
binations of ry = 50, 100, 250, 630, 1600, 2500, 4000 and 6300 MPa and n = 0, 0.1, 0.2, 0.3 and 0.4. Young�s
modulus of 210 GPa and Poisson�s ratio of 0.3 are used for all simulations. These values were chosen in
order to give ry/E ratio in the range of 1/4200 to 1/33, which includes most metals.
4. Results of the indentation by a paraboloid of revolution

Examples of h�–a�p (h* = h/R; a�p ¼ ap=R, where ap is the contact radius for parabolic indentation) relation-
ship obtained for materials with different ry/E ratios and n values are presented in Fig. 4. In this figure, the
curves can be fitted by two piecewise linear functions in a log-log scale, i.e. piecewise power functions in a
linear scale. The first function corresponds to the elastic regime and thus to a small contact radius and the
second corresponds to the plastic regime. It can be noted that when yielding occurs, the h�–a�p relationship
does not allow an elastic–plastic behavior and a fully plastic behavior to be distinguished, contrary to the
applied load–contact radius evolution (Tabor, 1951; Johnson, 1985; Sundararajan and Tirupataiah, 1994;
Taljat et al., 1998; Mesarovic and Fleck, 1999; Park and Pharr, 2004).

The h�–a�p evolution is governed in the elastic regime by the following dimensionless Hertz equation:
a�2p ¼ h� ð11Þ
In the plastic regime, the relationship between the true contact radius and penetration depth can be ex-
pressed by:
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a�Np ¼ 2Mh� ð12Þ
where M and N are constant for a given indented material.
The analysis of the 25 h�–a�p numerical curves allows the M and N coefficients to be expressed by the

functions:
M ¼
1.45þ 28.55nþ 1745r�y

� �
1� 0.5nþ 20r�y

� �
1þ 21.4nþ 1020r�y

� �
1þ 0.4nþ 60r�y

� �

N ¼
1.9þ 12.5nþ 570r�y

� �
1þ 0.1nð Þ

1þ 6.8nþ 340r�y

� �
ð13Þ
where r�y is equal to ry/E.
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We can notice in Eq. (13) that M and N are dependent on the ry/E ratio and the work hardening expo-
nent n. Fig. 5 shows the M and N evolution according to ry/E and n.

Results given in this figure indicate that N values are always smaller than 2. Thus, the slope (1/N) of the
h�–a�p in log–log scale is always higher than 0.5, which is the value of the slope of the ‘‘neither piling-up nor
sinking-in’’ curve (Fig. 4). Consequently, piling-up occurs for any material indented by a paraboloı̈d of rev-
olution starting from the following critical contact radius:
a�pcrit ¼ M1=ðN�2Þ ð14Þ
This is a noticeable difference compared to the spherical indentation and the conical indentation,
for which, piling-up occurs or not according to the material properties because of the indenter geometry
(Matthews, 1980; Taljat et al., 1998; Beghini et al., 2000; Alcala et al., 2000; Kucharski and Mröz, 2001;
Mata et al., 2002).

The smaller the strain hardening exponent, the smaller the value of a�pcrit (Fig. 6). According to pre-
vious results (Matthews, 1980; Hill et al., 1989; Taljat et al., 1998; Beghini et al., 2000; Alcala et al.,
2000; Kucharski and Mröz, 2001; Mata et al., 2002; Taljat and Pharr, 2004), this shows that the smaller
the strain hardening exponent is, the earlier the pile up arises. However, contrary to those of different
researchers (Matthews, 1980; Hill et al., 1989; Taljat et al., 1998; Alcala et al., 2000; Kucharski and
Mröz, 2001), the present results show that the h�–a�p relationship is dependent on the material yield stress.
Small values of N and high values of a�pcrit are obtained for high ry/E ratio. The influence of material
yield stress on the h*–a* evolution has been recently observed for conical indentation (Mata et al.,
2002) and spherical indentation (Beghini et al., 2000). For Mata et al. (2002), this influence exists when
a linear elastic behavior is not neglected and when a well-developed yield stress exist, which is the case
for the present study.
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5. Adaptation of the model for spherical indenter

The study of parabolic indentation was useful in order to distinguish the influence of the material and the
geometrical properties on the relationship between the contact radius and the penetration depth. However,
the study of spherical indentation is necessary because the ball indenter is a precision instrument which is
easy to make, yet robust, inexpensive and thus often used for experimental tests.

Because the spherical indenter is very similar to the parabolic indenter for small contact radius, the evo-
lution of the dimensionless contact radius between the sphere and the indented material, a�s , in function of
the penetration depth, can be fitted by a power law in the beginning of the plastic regime. However, Fig. 7
shows that this is not the case when the contact radius is large. Indeed, the use of the power function given
in Eqs. (12) and (13), enables the numerical data to be fitted correctly until a critical value of dimensionless
contact radius, about equal to 0.3, is reached. This value corresponds approximately to the higher limit for
which the spherical indenter can be represented by a parabolic function (difference of 1% between a�s and
a�p). Fig. 7 shows that a�s can be geometrically determined starting from the a�p value by using the following
equation:
a�s ¼ a�p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a�2p =4

q
ð15Þ
This equation was established using the assumption that the penetration depth is hardly influenced by
the difference in geometry between the spherical and the parabolic indenters. Compared with the previous
formulations (Matthews, 1980; Hill et al., 1989; Taljat et al., 1998; Alcala et al., 2000; Kucharski and Mröz,
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Fig. 7. Examples of dimensionless contact radius–indentation depth curves for parabolic and spherical indenters.
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2001), the interesting aspect of the proposed Eqs. (12), (13) and (15) is that they lead to a relationship be-
tween the true contact radius and the penetration depth valid, for spherical indenters, in the elastic–plastic
and fully plastic regimes (Fig. 7). This relationship is true until a large dimensionless contact radius is
reached (about 0.8 corresponding to a value of h* of about 0.4).
6. Analytical determination of the hc/h ratio

6.1. Parabolic indentation

Piling-up occurs when the (hc/h) ratio is higher than 1 whereas sinking-in occurs when this ratio is smal-
ler than 1 (Fig. 1). This criterion is valid for parabolic or spherical indentation.
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For a parabolic indentation, the results presented in Section 4 showed that the height/depth of the pile-
up/sink-in from the original surface depends on the contact radius. Starting from Eq. (12) and the equation
of the parabolic curve, the (hc/h) ratio can be expressed for material plastically deformed by the parabolic
indenter as follows:
h c/h
or

c2

1

1

h c/h
or

c2

Fig. 8.
results
numer
hc

h
¼ Ma�2�N

p ¼ M2=N ð2h�Þð2�NÞ=N ð16Þ
Examples given in Fig. 8 show that there is a strong similarity between the h*–(hc/h) relationship calculated
by using Eq. (16) and that obtained by finite element simulations when plasticity occurs. The results confirm
that the higher the contact radius, the more the piling-up is predominant, in the case of parabolic indentation.
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; ( ) calculated by Eq. (16); ( ) Hertz. Spherical indentation: (s) numerical results; (—) calculated by Eq. (19); (h) c2,
ical results ; - - c2, calculated by Eq. (17).
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6.2. Spherical indentation: use of the c2 parameter

For spherical indentation, Hill et al. (1989) proposed to replace the (hc/h) ratio by the c2 parameter de-
fined in Eq. (1). By using Eqs. (1), (12) and (15), the c2 parameter can be written for material plastically
deformed by the spherical indenter, as follows:
c2 ¼ a�2s

2h�
¼ M2=N ð2h�Þð2�NÞ=N 1� ð2Mh�Þ2=N

4

 !
ð17Þ
This equation shows that c2 is dependent on the dimensionless penetration depth h* or on the dimension-
less contact radius a�s . Fig. 8 shows that when a�s or h* increases, the c2 parameter is constant in the elastic
regime, then increases in a first stage of the plastic regime and decreases at the end of this regime.

Our results are in agreement with the numerical results obtained by Mesarovic and Fleck (1999) for the
high values of ry/E ratio. It can be seen in Fig. 8 that the decrease of c2 occurs for values h/R ratio higher
than approximately 0.15. This value corresponds to a value of dimensionless contact radius of approxi-
mately 0.5. However, for this range of h/R or a/R values, the definition of c2 given by Hill et al. (1989)
is not correct because the spherical indenter can�t be considered as similar to the parabolic indenter, i.e.
h/(2R) can not be considered as very small compared to 1.

If the values of the c2 parameter are compared to those of the hc/h ratio, it can be seen that c2 corre-
sponds to hc/h for small deformations. However, c2 is much smaller than hc/h when the dimensionless pen-
etration depth is higher than 0.1. Above this value, corresponding to a value of a* of about 0.4, the use of
the c2 parameter has as a consequence a noticeable underestimation of the contact depth and thus of the
contact radius. For example, in the case of a spherical indentation of a material of ry/E = 1/84 and
n = 0, the value of the hc/h ratio indicates that piling-up occurs starting from a critical value of h* of
approximately 0.12, whereas the c2 parameter indicates sinking-in for all contact radius values.

6.3. Spherical indentation: use of the c 02 = (hc/h) parameter

In order to avoid errors in the case of large values of h*, the true relationship between a�s and the dimen-
sionless penetration depth must be written as follows:
a�2s ¼ c02ð2h� � c02h�2Þ ð18Þ

In this equation, we introduce a parameter c 02 equal to the hc/h ratio. This parameter is equal to 1 when
neither piling-up nor sinking-in occurs but is different to the c2 parameter defined by Eqs. (6)–(9) in the case
of plastically indented material.

The c 02 parameter, equal to hc/h can be written as follows:
c02 ¼ hc

h
¼ M 2 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a�2s

q� �h ið2�NÞ=2

¼ M2=Nð2h�Þð2�NÞ=N ð19Þ
This relationship was established by using Eqs. (12), (15) and (18) and thus is valid up to a dimensionless
contact radius of about 0.8. The h*–c 02 relationship defined by Eq. (19) in the case of spherical indentation is
equivalent to the h*–(hc/h) relationship defined for the parabolic indentation (Eq. (16)). The numerical re-
sults given in Fig. 8 confirms that the difference of shape between the spherical and parabolic indenters
has little influence on the h*–(hc/h) relationship throughout the domain where Eqs. (15) and (19) are valid.
Moreover, if we consider h* values lower than 0.3, the numerical results show that, as for parabolic inden-
tation, the hc/h is constant when a material is elastically deformed by a spherical indenter but is never con-
stant when plasticity occurs. The results obtained by Eq. (19), proposed in order to describe hc/h, are in good
agreement with the results obtained by Taljat and Pharr (2004) for a material of ry/E = 1/200 and n = 0
when sinking-in occurs (Fig. 9). However, there is a consistent gap when piling-up predominates. The reason
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for this gap is that the friction coefficient between the indenter and the material is higher for the Taljat and
Pharr�s simulation (a = 0.2) compared to the simulations used in order to determine the Eq. (19) (a = 0). In-
deed, according to the results of Mata and Alcala (2004) and Taljat and Pharr (2004), a numerical simulation
performed with a friction coefficient equal to 0.2 shows that an increase in friction coefficient reduce the hc/h
ratio in the case of pile-up but has little influence in the case of sink-in.

Lastly, for the a* values higher than 0.8, the numerical values of c 02(= hc/h) are constant or decrease be-
cause of the high value of the angle, b ; between the tangent line to the contact at its periphery and the
undeformed surface (Fig. 1). Indeed, angle b, close to 90�, facilitates the rupture of contact between the
indenter and the indented material at the periphery of the contact.

6.4. Discussion about the previous analytical formulation of c2

The preceding results showed that the value of the c2 parameter increases with the penetration depth
when the definition of this parameter is valid. In consequence, the previous Eqs. (6)–(9) (Matthews,
1980; Hill et al., 1989; Taljat et al., 1998; Alcala et al., 2000) established in order to determine the hc/h
and dependent only on the strain hardening exponent are valid only for a given penetration depth.
Fig. 10a confirms this observation. Indeed, it can be seen in this figure that the values obtained by the
Matthews�s formulation (Eq. (6)) are close to those determined by c 02 in the case of an indented material
of ry/E ratio equal to 1/2100 and for a dimensionless contact radius in the range from 0.5 to 0.6. The reason
for this closeness is due to the fact that the Matthews�s formulation was determined starting from a fit to the
Norbury and Samuel hc/h versus n experimental results obtained at a depth for which a/R was mostly
between 0.4 and 0.8. The other curves calculated by Eqs. (7)–(9) in the case of a same indented material
are only approximate to our results obtained when a�s is in the range from 0.3 to 0.4, which is coherent with
the assumptions of the different authors (Hill et al., 1989; Taljat et al., 1998; Alcala et al., 2000). The
condition on the penetration depth is not the only one in order to obtain correct results with these c2

analytical formulations because when a�s is equal to 0.4 and ry/E is smaller than 1/333 a strong difference
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exists between c2 calculated by using Eqs. (6)–(9) and c 02 = hc/h (Fig. 10b). This figure shows that the higher
the ry/E ratio, the smaller the hc/h, which is in good agreement with recent results obtained for spherical
indentation (Beghini et al., 2000; Taljat and Pharr, 2004) and conical indentation (Mata et al., 2002). Thus,
for large ry/E ratios, the use of Eqs. (6)–(9) has, as a consequence, a large overestimation of the hc/h ratio.

In conclusion, because of the assumptions of the different authors (Matthews, 1980; Hill et al., 1989;
Taljat et al., 1998; Alcala et al., 2000), the analytical formulations (6)–(9) established in order to determine
the contact radius starting from the knowledge of the penetration depth, lead to acceptable results only for
a given penetration depth and when ry/E is smaller than about 1/333.
7. Discussion about the development of the pile-up

For the studied range of materials, we determine the relationship between the mechanical properties of
the material, i.e. the ry/E ratio and n, and the dimensionless contact radius, a�scrit, starting from which the
pile-up appears. By using Eqs. (14) and (15), the critical a�scrit can be expressed as follows:
a�scrit ¼ a�pcrit

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

a�2pcrit

4

s
¼ M1=ðN�2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2=ðN�2Þ

4

s
ð20Þ
As for Eqs. (15), this formulation is correct up to an a�s value about equal to 0.8.
Fig. 11 shows the evolution of the critical a�scrit values according to the ry/E ratio and the strain hardening

exponent n. In the case of material with small yield stress, it can be seen in this figure that piling-up appears
for a value of work hardening exponent of approximately 0.22 when the critical contact radius is in the range
of 0.3–0.4. This work hardening exponent value is similar to that calculated by Eqs. (6)–(9) proposed by dif-
ferent researchers (Matthews, 1980; Hill et al., 1989; Taljat et al., 1998; Alcala et al., 2000).

We demonstrated, in the case of parabolic indentation, that the higher the ry/E ratio, the later the pile up
arises. For spherical indentation, the same behaviour is observed but because of the indenter shape, piling-
up may not appear, especially for high values of n and high values of ry/E ratio. On the basis of numerical
results, we can consider that no piling-up occurs for spherical indentation when the M parameter defined in
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Eq. (13) is smaller than 1 (Fig. 11). Indeed, the a*–(hc/h) curves obtained numerically for three different in-
dented materials of M = 1 show that the values of the critical contact radius a�s , for which the pile-up ap-
pears, is equal to

ffiffiffiffiffiffiffiffi
3=2

p
� 0.87 (Fig. 12). Fig. 12 shows that the numerical results obtained for these three

materials are close to those calculated by Eq. (19) up to a dimensionless contact radius of 0.8 (limit of the
validity domain of Eq. (19)). Beyond this limit, three types of behaviours are observed depending on the
material. For the material of ry/E = 1/84 and n = 0.219, The hc/h ratio increases slightly up to a value
of hc/h of approximately 1. For the material of ry/E = 1/840 and n = 0.326, the hc/h ratio does not increase
significantly and the value of this ratio is slightly lower than 1. For the last material characterized by a ry/E
ratio and a work hardening exponent respectively equal to 1/33 and 0, the hc/h ratio increases and the value
of this ratio exceeds 1. In conclusion, the criterion M < 1 is not perfect but is valid in order to determine
when the pile-up does not appear for most of the spherically indented materials.
8. Conclusion

New formulations are proposed in order to determine the indentation depth–contact radius relationship
in the case of parabolic and spherical indentations. In a first step, it is shown, for parabolic indentation,
that the contact radius evolution, ap, in function of the penetration depth, h, is governed by two piecewise
power functions. The first function corresponds to the elastic regime and the second corresponds to the
plastic regime. A new power law is proposed in order to determine the h–a relationship in the plastic regime
for a rigid parabolic indenter and an indented material of Poisson�s ratio of 0.3. The parameters of the pro-
posed power law depend on the yield stress and the strain hardening coefficient of the indented material.
The values of these parameters show that piling-up occurs for any material indented by a paraboloı̈d of
revolution starting from a critical contact radius. This is a noticeable difference compared to spherical
indentation and conical indentation, for which, piling-up or sinking-in occurs or not in the fully plastic re-
gime, depending on the material. It can be also noticed that the smaller the strain hardening coefficient, the
earlier the pile up arises. Similarly, the smaller the ry/E ratios, the earlier the pile up arises. The same con-
clusion is drawn for small n. Then, a geometrical adaptation was performed in order to determine the h–as

evolution for a rigid spherical indenter starting from the power law proposed for the parabolic indentation.
From our results, we show that the previous equations proposed in order to determine the penetration
depth–contact radius relationship are only valid for a given penetration depth and for materials of small
yield stress. The formulation proposed in the present study for spherical indentation has the advantage
of being correct in the plastic regime up to a dimensionless contact radius of about 0.8 and for materials
of ry/E ratios in the range of 1/4200 to 1/33. Lastly, a simple criterion, depending on the material mechan-
ical properties, is proposed in order to know when piling-up appears for the spherical indentation.
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